聚乳酸-羟基乙酸纳米粒及其修饰应用

张丽,赵云春,郑彩虹

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (16) : 1369-1374.

PDF(938 KB)
PDF(938 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (16) : 1369-1374. DOI: 10.11669/cpj.2015.16.002
综述

聚乳酸-羟基乙酸纳米粒及其修饰应用

  • 张丽1,2,赵云春3,郑彩虹4*
作者信息 +

Modification and Application of PLGA-based Nanoparticles

  • ZHANG Li1,2, ZHAO Yun-chun3, ZHENG Cai-hong4*
Author information +
文章历史 +

摘要

笔者就聚乳酸-羟基乙酸(PLGA)纳米粒及其修饰手段和应用情况进行综述。根据国外文献报道,对近年来聚乳酸-羟基乙酸纳米粒的制备及其修饰作用和应用的研究进行分析和归纳。聚乳酸-羟基乙酸是缓控释可生物降解微粒制备中应用最多的载体材料之一。本篇综述重点关注聚乳酸-羟基乙酸纳米粒的制备及修饰。制备方法主要包括乳化法、界面沉积法、自乳化溶剂扩散法、溶剂注入法以及超临界流体抗溶剂法。修饰方法主要为共价交联、静电吸附和疏水作用力。修饰的目的主要可以应用于优化包囊参数、调节释放、提高细胞摄取和靶向特定的组织或细胞。

Abstract

This review provided the research progresses of the strategies of the modification and application of poly (lactic-co-glycolic acid, PLGA) nanoparticles . The preparation and modification METHODS of PLGA nanoparticles and their application according to the reported foreign literature were analysed and summaried. PLGA is a biodegradable and biocompatible polymer which is one of the most widely used materials in preparation of sustained and controlled microparticles as drug vectors. This review focuses on the METHODS of modified nanoparticles and the advantages. Emulsification method, nanoprecipitation, emulsification solvent diffusion, solvent injection method and supercritical anti-solvent technique are the main five preparation METHODS of PLGA nanoparticles.The strategies of modifition include covalent cross-link, electrostatic interaction and hydrophobic interaction. The applications of modified nanoparticles to the optimal formulation, sustained release profile, improved cellular uptake, and targeting to specific organs or cells are introduced.

关键词

聚乳酸-羟基乙酸 / 纳米粒 / 修饰 / 应用

Key words

PLGA / nanoparticle / modification / application

引用本文

导出引用
张丽,赵云春,郑彩虹. 聚乳酸-羟基乙酸纳米粒及其修饰应用[J]. 中国药学杂志, 2015, 50(16): 1369-1374 https://doi.org/10.11669/cpj.2015.16.002
ZHANG Li, ZHAO Yun-chun, ZHENG Cai-hong. Modification and Application of PLGA-based Nanoparticles[J]. Chinese Pharmaceutical Journal, 2015, 50(16): 1369-1374 https://doi.org/10.11669/cpj.2015.16.002
中图分类号: R944   

参考文献

[1] ARAVIND A, NAIR R, RAVEENDRAN S, et al. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy[J]. J Magn Magn Mater, 2013, 344:116-123.
[2] PARK J, MATTESSICH T, JAY S M, et al. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates[J]. J Controlled Release, 2011, 156(1):109-115.
[3] CHEN H W, GAO J, LU Y, et al. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy[J]. J Controlled Release, 2008, 128(3):209-216.
[4] KHOEE S, RAHMATOLAHZADEH R. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: A comprehensive kinetic study[J]. Eur J Med Chem, 2012, 50:416-427.
[5] TAHARA K, SAKAI T, YAMAMOTO H,et al. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery[J]. Int J Pharm, 2008, 354(1-2):210-216.
[6] TAHARA K, YAMAMOTO H, HIRASHIMA N,et al. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects[J]. Eur J Pharm Biopharm, 2010, 74(3):421-426.
[7] 〖JP2〗BENFER M, KISSEL T. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles[J]. Eur J Pharm Biopharm, 2012, 80(2):247-256.〖JP〗
[8] ZHENG Y, YU B, WEECHARANGSAN W,et al. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells[J]. Int J Pharm, 2010, 390(2):234-241.
[9] FATEMEH Z, MU Y, LENG Y P,et al. PLGA-HPMC nanoparticles prepared by a modified supercritical anti-solvent technique for the controlled release of insulin[J]. J Supercrit Fluids, 2015,99:15-22.
[10] CHEN M S, OUYANG H C, ZHOU S Y, et al. PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses[J]. Cell Immunol, 2014, 287(2):91-99.
[11] LEE J Y, LEE S H, OH M H,et al. Prolonged gene silencing by siRNA/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles[J]. J Controlled Release, 2012, 162(2):407-413.
[12] CUI Y N, XU Q X, CHOW P K,et al. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment[J]. Biomaterials, 2013, 34(33):8511-8520.
[13] LEE S H, MOK H, LEE Y H,et al. Self-assembled siRNA-PLGA conjugate micelles for gene silencing[J]. J Controlled Release, 2011, 152(1):152-158.
[14] CHEN J, LI S S,SHEN Q. Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery[J]. Eur J Pharm Sci, 2012, 47(2):430-443.
[15] WANG H, ZHAO Y, WU Y,et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles[J]. Biomaterials, 2011, 32(32):8281-8290.
[16] WEI K, PENG X M, ZOU F. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery[J]. Int J Pharm, 2014, 464(1-2):225-233.
[17] YADAV A K, MISHRA P, MISHRA A K,et al. Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin[J]. Nanomed, 2007, 3(4):246-257.
[18] LUO G P, YU X J, JIN C,et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors[J]. Int J Pharm, 2010, 385(1-2):150-156.
[19] JAGANI H V, JOSYULA V R, PALANIMUTHU V R,et al. Improvement of therapeutic efficacy of PLGA nanoformulation of siRNA targeting anti-apoptotic Bcl-2 through chitosan coating[J]. Eur J Pharm Sci, 2013, 48(4-5):611-618.
[20] ZHOU J B, PATEL T R, FU M,et al. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors[J]. Biomaterials, 2012, 33(2):583-591.
[21] 〖JP2〗LIU P F, QIN L B, WANG Q,et al. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer[J]. Biomaterials, 2012, 33(28):6739-6747.〖JP〗
[22] KATAS H, CEVHER E,ALPAR H O. Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery[J]. Int J Pharm, 2009, 369(1-2):144-154.
[23] ZENG P, XU Y, ZENG C H,et al. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing[J]. Int J Pharm, 2011, 415(1-2):259-266.
[24] DILLEN K, BRIDTS C, VAN DER VEKEN P,et al. Adhesion of PLGA or Eudragit/PLGA nanoparticles to staphylococcus and pseudomonas[J]. Int J Pharm, 2008, 349(1-2):234-240.
[25] FAY F, QUINN D J, GILMORE B F,et al. Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles[J]. Biomaterials, 2010, 31(14):4214-4222.
[26] STEINBACH J M, WELLER C E, BOOTH C J,et al. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection[J]. J Controlled Release, 2012, 162(1):102-110.
[27] JENSEN D K, JENSEN L B, KOOCHEKI S,et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA[J]. J Controlled Release, 2012, 157(1):141-148.
[28] KUMAR A, WONGANAN P, SANDOVAL M A,et al. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles[J]. J Controlled Release, 2012, 163(2):230-239.
[29] WANG J P, FENG S S, WANG S,et al. Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment[J]. Int J Pharm, 2010, 400(1-2):194-200.
[30] PARVEEN S, SAHOO S K. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery[J]. Eur J Pharm, 2011, 670(2-3):372-383.
[31] MA T T, WANG L Y, YANG T Y, et al. Homogeneous PLGA-lipid nanoparticle as a promising oral vaccine delivery system for ovalbumin[J]. Asian J Pharm Sci, 2014,9(3):129-136.
[32] CHENG C J,SALTZMAN W M. Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides[J]. Biomaterials, 2011, 32(26):6194-6203.
[33] UNGARO F, D′ANGELO I, COLETTA C, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers[J]. J Controlled Release, 2012, 157(1):149-159.
[34] GAJENDIRAN M, GOPI V, ELANGOVAN V, et al. Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: In vitro and in vivo drug release[J]. Colloids Surf B Biointerfaces, 2013, 104:107-115.
[35] STIGLIANO C, ARYAL S, DE TULLIO M D, et al. siRNA-chitosan complexes in poly(lactic-co-glycolic acid) nanoparticles for the silencing of aquaporin-1 in cancer cells[J]. Mol Pharm, 2013, 10(8):3186-3194.
[36] ALI H, WEIGMANN B, NEURATH M F, et al. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases[J]. J Controlled Release, 2014, 183:167-177.
[37] NARVEKAR M, XUE H Y,WONG H L. A novel hybrid delivery system: Polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA)[J]. Int J Pharm, 2012, 436(1-2):721-731.
[38] NGUYEN J, STEELE T W, MERKEL O, et al. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy[J]. J Controlled Release, 2008, 132(3):243-251.
[39] LIU P F, SUN Y M, WANG Q, et al. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas[J]. Biomaterials, 2014, 35(2):760-770.
[40] CARTIERA M S, JOHNSON K M, RAJENDRAN V, et al. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells[J]. Biomaterials, 2009, 30(14):2790-2798.
[41] THASNEEM Y M, REKHA M R, SAJEESH S, et al. Biomimetic mucin modified PLGA nanoparticles for enhanced blood compatibility[J]. J Colloid Interface Sci, 2013, 409:237-244.
[42] FIELDS R J, CHENG C J, QUIJANO E, et al. Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery[J]. J Controlled Release, 2012, 164(1):41-48.
[43] WANG H X, ZHAO Y X, WANG H Y, et al. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer[J].J Controlled Release, 2014, 192:47-56.
[44] SHAH P P, DESAI P R, SINGH M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen[J]. J Controlled Release, 2012, 158(2):336-345.
[45] 〖JP3〗RAMANLAL CHAUDHARI K, KUMAR A, MEGRAJ KHANDELWAL V K, et al. Bone metastasis targeting: A novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel[J]. J Controlled Release, 2012, 158(3):470-478.〖JP〗
[46] HOOD E D, CHORNY M, GREINEDER C F, et al. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation[J]. Biomaterials, 2014, 35(11):3708-3715.
[47] LIU C W, LIN W J. Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells[J]. J Drug Target, 2013, 21(8):776-786.
[48] WANG Y F, LIU P F, QIU L H, et al. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice[J]. Biomaterials, 2013, 34(16):4068-4077.
[49] LIU P F, YU H, SUN Y, et al. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery[J]. Biomaterials, 2012, 33(17):4403-4412.
[50] HAMDY S, MOLAVI O, MA Z, et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity[J]. Vaccine, 2008, 26(39):5046-5057.
[51] WISCHKE C, MATHEW S, ROCH T, et al. Potential of NOD receptor ligands as immunomodulators in particulate vaccine carriers[J]. J Controlled Release, 2012, 164(3):299-306.
[52] GUPTA R K, GOSWAMI D G, SINGH R R, et al. Soybean agglutinin coated PLA particles entrapping candidate vaccines induces enhanced primary and sustained secondary antibody response from single point immunization[J].Eur J Pharm Sci, 2012, 45(3):282-295.
[53] RAGHUWANSHI D, MISHRA V, SURESH M R, et al. A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles[J]. Vaccine, 2012, 30(50):7292-7299.
[54] CRUZ L J, TACKEN P J, FOKKINK R, et al. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells[J]. Biomaterials, 2011, 32(28):6791-6803.
[55] RAJAPAKSA T E, STOVER-HAMER M, FERNANDEZ X, et al. Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery[J]. J Controlled Release, 2010, 142(2):196-205.

基金

国家自然科学基金资助项目(81173000);浙江省自然科学基金资助项目(LY14H300005)
PDF(938 KB)

Accesses

Citation

Detail

段落导航
相关文章

/